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Abstract. We study the distribution of persistent sites (sites unvisited by particles A) in the one-
dimensionalA+A→ ∅ reaction–diffusion model. We define the empty intervals as the separations
between adjacent persistent sites, and study their size distribution n(k, t) as a function of interval
length k and time t . The decay of persistence is the process of irreversible coalescence of these
empty intervals, which we study analytically under the independent interval approximation (IIA).
Physical considerations suggest that the asymptotic solution is given by the dynamic scaling form
n(k, t) = s−2f (k/s)with the average interval size s ∼ t1/2. We show under the IIA that the scaling
function f (x) ∼ x−τ as x → 0 and decays exponentially at large x. The exponent τ is related to
the persistence exponent θ through the scaling relation τ = 2(1−θ). We compare these predictions
with the results of numerical simulations. We determine the two-point correlation function C(r, t)
under the IIA. We find that for r � s, C(r, t) ∼ r−α where α = 2 − τ , in agreement with our
earlier numerical results.

1. Introduction

The persistence of fluctuations in stochastic processes has been an important topic of study in
recent times [1]. Of primary interest in this context is the persistence probability P(t), which
is the probability that a given stochastic variable φ(t) with zero mean retains its sign during
the time interval [0, t]. A power-law decay P(t) ∼ t−θ is found in many systems of physical
interest. Consequently, much effort has gone into the calculation of the new exponent θ and
studying its properties. There have also been some experimental studies of the persistence
exponent θ . These include coarsening dynamics of breath figures [2], soap froth [3] and
twisted nematic liquid crystals [4].

A particularly important class of systems whose persistence behaviour has been
investigated are spatially extended systems with a stochastic field φ(x, t) at each lattice site x.
The time evolution of φ(x, t) is coupled to that of its neighbouring sites. φ(x, t) could be, for
instance, an Ising spin [5, 6], a phase ordering field [7], a diffusing field [8] or the height of a
fluctuating interface [9]. The persistence probability P(t) is then the fraction of sites x where
φ(x, t) has not flipped sign by time t . Recently it was observed that the set of persistent sites
forms a fractal and the time evolution of their spatial correlations obeys dynamic scaling [10].
The purpose of this paper is the investigation of these spatial correlations.

For concreteness, we study the one-dimensional A + A → ∅ model. Our primary
motivation for this choice is the simplicity of the dynamics of the model, which makes an
analytic approach possible. In addition, this model is closely related to the d = 1 Glauber–
Ising model, which is perhaps the only non-trivial model where θ is known exactly. We study
the distribution of the separations between nearest-neighbour pairs of persistent sites. We
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call this the empty interval distribution n(k, t), defined as the number of occurrences where
consecutive persistent sites are separated by distance k at time t .

In this paper, we study the time evolution of the size distribution n(k, t) of these empty
intervals. Persistence decay is identified with the irreversible coalescence of these intervals.
The paper is organized as follows. In the next section we write a rate equation for the
coalescence of these intervals under the independent interval approximation (IIA) that the
lengths of adjacent intervals are uncorrelated. We give phenomenological arguments about
the asymptotically relevant dynamical length scale as well as the coalescence probability.
These arguments, combined with the rate equation, give the dynamic scaling behaviour of
n(k, t) at late times t . We compare our predictions with numerical results. In section 3, we
use the IIA to predict the two-point correlations in the distribution of persistent sites. The
predictions are found to be in agreement with recent numerical results, showing that the IIA
is valid.

2. The empty interval distribution

In the A + A → ∅ model, a set of particles is distributed at random on the lattice with
average density n0. Over one time step, all the particles make an attempted jump to either
of the neighbouring sites with some probability D. If two particles meet each other, both
disappear from the lattice. In one dimension, the density of particles decays with time as
n(t) ∼ (8πDt)−

1
2 as t → ∞ [11]. Persistent sites in the A + A → ∅ model at any time t

are defined as the sites which remain unvisited by any diffusing particle throughout the time
interval [0 : t]. Empty intervals (which we will call ‘Interval’ for simplicity henceforth) are
defined as the separations between two consecutive persistent sites. By definition, an Interval
cannot contain a persistent site, although it may contain one or more diffusing particlesA. The
total number (per site) of Intervals of length k at time t is denoted by n(k, t) and is called the
empty interval distribution.

To start with, the particles are put randomly on the lattice so that n(k, t = 0) =
n2

0(1 − n0)
k ∼ e−λk where λ = − log(1 − n0). With time, the particles diffuse on the

lattice, making the sites non-persistent. n(k, t) evolves satisfying the following normalization
conditions. If Im(t) = ∑

k k
mn(k, t) ≈ ∫ ∞

1 n(s, t)sm ds is themth moment of the distribution,
then

I0(t) = P(t) ∼ t−θ
I1(t) = 1

I2(t) ≡ s(t).
(1)

The first condition follows from the definition of n(k, t), the second one implies length
conservation and the third condition gives the mean interval size s(t). The probability
distribution of interval lengths is p(k, t) = n(k,t)∑

k n(k,t)
= P(t)−1n(k, t) so that

∑
k p(k, t) = 1.

Two neighbouring Intervals can coalesce when the persistent site between them is
destroyed by a diffusing particle at the boundary of either of the Intervals . Note that this
coalescence process is irreversible. For simplicity, we consider only binary coalescence in a
single time step where two adjacent Intervals of lengths k1 and k2, separated by a persistent
site, coalesce and form a new Interval of length k1 + k2 when the persistent site is ‘killed’ by a
particle (figure 1). To study this process analytically, we invoke a mean-field approximation—
the lengths of adjacent Intervals are treated as uncorrelated random variables with probability
distribution p(k, t). This is the IIA, which has been used to study a variety of problems in one
dimension [12, 13].
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Figure 1. In the picture, white circles are persistent sites (numbered 1, 2, 3, . . .) and dark triangles
are diffusing particles. Two Intervals E12 and E23 are shown to merge together to give a new
Interval E13 when the persistent site 2 at the boundary is killed by a diffusing particle.

2.1. Rate equation for interval coalescence

Assuming that IIA is valid, the time evolution of n(k, t) is given by the rate equation

∂n(k, t)

∂t
= 1

2

k−1∑
m=1

n(m, t)p(k −m, t)K(m, k −m, t)− n(k, t)
∞∑
m=1

p(m, t)K(m, k, t) (2)

whereK(m1,m2, t) is the probability that two adjacent Intervals of lengthsm1 andm2 coalesce
at time t . The first term in equation (2) represents the increase in number of Intervals of size k
through coalescence of smaller intervals, while the second term is the loss term representing
the decrease in number when Intervals of size k merge with other Intervals.

To solve the above equation for n(k, t), one needs to know the form of the reaction kernel
K(m1,m2, t). The process of coalescence of Intervals involves the destruction of the persistent
site in between them by a particle, which can originate from either of the Intervals. So, quite
generally,

K(m1,m2, t) = Q(m1, t) +Q(m2, t) (3)

where Q(m, t) is the fraction of intervals of size m which is destroyed at time t . Q(m, t)
satisfies the following condition by definition:

∑
m

n(m, t)Q(m, t) = −∂P (t)
∂t

= θ

t
P (t) (4)

where we have made use of the fact that P(t) ∼ t−θ .
The form of Q(m, t) can be argued for in the following way. An Interval of length m at

time t can contain a particle anywhere inside it only if the interval length is at least of the order
of the diffusive scale

√
Dt . That is, Q(m, t) � 0 for m � √

Dt . It is also known that the
particle distribution is correlated over length scales r � √

Dt , wheras it is completely random
over r � √

Dt [13]. So we expect that for m � √
Dt , Q(m, t) → α(t), independent of

m. These physical considerations lead us to suggest the following dynamic scaling form for
Q(m, t):

Q(m, t) = α(t)β
(
m√
Dt

)
(5)

where the function β(x) is expected to have a sigmoidal form, i.e. β(x) = 0 for x � 1 and
β(x)→ 1 for x � 1. The function α(t) will be determined later.

2.2. Dynamic scaling

We assume that, at asymptotic times, the distribution n(k, t) is characterized by a single
dynamic length scale s(t). We note that there are two relevant length scales in the problem.
The first is the diffusive scale LD(t) ∼ √

Dt entering the scaling form equation (5) for the
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coalescence probability. On the other hand, the inverse of the persistent fraction P(t) is also a
length scale, which we shall call the persistence scale, denoted by Lp(t) ∼ t θ . The asymptotic
behaviour is expected to be dominated by the larger of the two, i.e. the diffusive scale LD(t)
in the present case (since θ < 1

2 ).
We now invoke the dynamic scaling ansatz, i.e. n(k, t) ∝ f ( k

s
) with

s ∼ t1/z z = 2. (6)

From the length conservation condition given by the second part of equation (1) it follows
that the prefactor is ∼s−2. Thus, the scaling solution for n(k, t) is written in the form

n(k, t) = s(t)−2f

(
k

s(t)

)
. (7)

Substituting equations (5) and (7) in (4), we find α(t).

α(t) = θ

t

s(t)P (t)

B
(8)

where B = ∫ ∞
0 β(x)f (x) dx. Substituting equation (7) in the normalization conditions

equation (1), we find the following conditions on the scaling function:∫ ∞

s−1
f (x) dx = sP (t)

∫ ∞

0
f (x)x dx = 1. (9)

In the first integral, the lower limit is set as s(t)−1 to take care of any possible small
argument divergence.

Substituting equations (5)–(8) in (2), we find the following equation for the scaling function
f (x):

η

z

∂f

∂η
= − θ

B

∫ η

2

s(t)−1
f (x)f (η − x)[β(x) + β(η − x)] dx

−
[

2

z
− θ − θ

B
s(t)P (t)β(η)

]
f (η) (10)

where the scaling variable η = k
s(t)

.

Case 1. η � 1.
For η � 1, all β(x) � 0 for x � η. This case corresponds to small Intervals, i.e. those

which are not large enough to contain a diffusing particle until time t . In this case, the equation
reduces to η ∂f

∂η
= −(2−zθ)f (η), which has the solution f (η) ∼ η−τ , where the new exponent

τ is related to θ through the scaling relation:

τ = 2 − zθ. (11)

From equation (7) this implies that for k � s, n(k, t) ∼ t−θ k−τ . For the model under
consideration here, θ is known exactly to be 3

8 [6], which gives τ = 5
4 .

Case 2. η � 1.
For general values of η, β(η) is non-zero, and, because τ > 1, the first integral diverges

near x = 0 as x−(τ−1). There is another divergence in the last term, of the form t1/z−θ . It
can be shown that this term can be exactly cancelled by the divergent part of the first integral.
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After carrying out this ‘regularization’ (details to be found in appendix A) and putting z = 2
in equation (10) the equation for the scaling function f (η) stands as

η

2

∂f

∂η
= − θ

B

∫ η

2

0
f (x)f (η − x)[β(x) + β(η − x)− β(η)] dx − θ

B
β(η)

∫ η

2

0
f (x)

×[f (η − x)− f (η)] dx −
[

1 − θ − θ

B
β(η)

∫ ∞

η

2

f (x) dx

]
f (η). (12)

A general solution of this equation requires the knowledge of the detailed form of the
scaling function β(η). However, for large values of η where β(η) � 1, one can simplify this
equation. We define the point η∗ as sufficiently large that, for η � η∗, β(x) = 1 within the
limits of accuracy required. Without any loss of generality, one can put η∗ = 1 by rescaling
the length scale s(t) accordingly. For η � 1, we define f (η) ≡ h(η), whose equation is

η

2

∂h

∂η
= − θ

B

[
2

∫ η

2

1
h(x)h(η − x) dx +

∫ 1

0
f (x)[h(η − x)− h(η)] dx

]
− (1 − 2θ)h(η).

(13)

This equation has a solution of the form h(η) = Ge−λη as can be shown by direct
substitution. The constants G and λ are related through the relations

λB = 2θG (14)

and

λ + 2θ = 1 +
θ

B
F(λ) (15)

where F(λ) = ∫ 1
0 f (x)[e

λx(1 + β(x))− 1] dx and

B =
∫ 1

0
f (x)β(x) dx +

G

λ
e−λ (16)

by definition. Equations (14)–(16) formally give the constants λ and G. However, the actual
evaluation of these constants requires the knowledge of the function f (x) in the entire range
[0 : 1] (and not just near x = 0, where f (x) ∼ x−τ ), which, in turn, is possible only if the
detailed form of β(x) is known. Hence we will restrict ourselves to showing that the parameter
λ > 0, which is required for the solution to be physically reasonable.

In equation (16), we note that B � G
λ

e−λ, depending on how sharply β(x) rises near
x = 1. The equality holds for the step function β(x) = ((x − 1) where ((x) = 0 for
x < 0 and ((x) = 1 for x � 0. After using this inequality in equation (14), we find that
λ � − log(2θ). Since θ < 1

2 , it follows that λ > 0.

2.3. Numerical results

We determine the distribution n(k, t) numerically by simulating A + A → ∅ model on a
one-dimensional lattice of size N = 105 with periodic boundary conditions. Particles are
initially distributed at random on the lattice with some average density n0, and their positions
are sequentially updated—each particle is made to move one step in either direction with
probability D = 1

2 . When two particles meet each other, both are removed from the lattice.
The time evolution is observed up to 105 Monte Carlo steps (1 MC step is counted after all the
particles in the lattice have been touched once). The simulation is repeated for several random
starting configurations of the particles for any particular initial density and we repeat the entire
simulation for four different initial densities n0. For any n0, we determine the number of
intervals of length k (per site) at time t .
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Figure 2. The length scale s(t) is plotted as a function of time t . The straight line is a fit, with
slope 1

2 .

To compute the mean interval size s(t), we ran the simulation up to t = 105 time steps, and
averaged the results over 100 starting distributions of particles, with the same initial density.
In figure 2, we plot s(t) versus t for four different values of n0—0.2, 0.5, 0.8 and 0.95. For
n0 = 1

2 we find that s(t) ∼ at1/z with z � 1.97(1) and a � 5.96, but for other values of
n0 we find that the observed value of z is different from 2. In figure 3, the running exponent
d(log s)/d(log t) is plotted against 1/(log t) and the results show the systematic deviation away
from the value 1

2 expected from the scaling picture presented in the previous section. We will
discuss the possible origin of this deviation later.

In figure 4, we plot the scaling function f (x) = s(t)2n(k, t) against the scaling variable
x = k/s(t) for t = 104 and 3 × 104. To find the nature of the scaling function one needs to
average over many configurations. This has restricted us to smaller time steps and data for three
values of initial density, n0 = 0.2, 0.5 and 0.8 averaged over 500, 1000 and 1500 different
initial distributions of particles respectively. For all n0, we find that the scaling function
f (x) ∼ x−τ for x � 1 and decays exponentially for higher values of x. For n0 = 0.5, we
find τ = 1.25(1) in accordance with the scaling relation equation (11). For n0 = 0.2 we find
τ � 1.32(2), while for n0 = 0.8 the observed value of τ is 1.13(2). For all n0, τ satisfies the
scaling relation equation (11) if z is replaced by its effective value.

For general values of n0, we find that the numerical values of s(t) support the following
form (within the time range studied):

sn0(t) ∼ at1/z + b(n0)t
φ. (17)

The non-universal constant b is <, = or >0 for n0 <, = or >0.5. To compute the
prefactor b and the exponent φ, we plot the difference ,sn0(t) = |sn0(t) − s1/2(t)| versus t ,
for n0 = 0.2, 0.8 and 0.95 (figure 5). The exponent φ is numerically found to be close to the
persistence exponent θ = 0.375 (table 1). In figure 6, we show the simulation data together
with the fitting form equation (17) using the estimated numerical values of a and b. We find
that as n0 → 1, the constant b undergoes a sharp rise so that the effective dynamical exponent
of s(t) is numerically close to θ for an appreciable range in time (figure 3). At the same time,
we note that only the first term in equation (17) is asymptotically relevant since φ < 1

2 .
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Figure 3. The effective exponent d log s
d log t is plotted against 1/ log t for four values of starting density.

For n0 = 0.5, the exponent value is close to 0.5, expected from the scaling arguments. For other
values of n0, systematic deviations away from 0.5 are observed.

t = 3:104
n0 = 0:8 : t = 104
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Figure 4. The scaling function f (η) = s(t)2n(k, t) is plotted against the scaling variable
η = k/s(t) on a logarithmic scale. There is a power-law divergence at small η and exponential
decay at large η, as predicted by the IIA calculation. The observed value of τ for n0 = 0.8 is seen
to be appreciably different from that for other n0.

The two terms in equation (17) may have their origin from the two dynamical length scales
in the problem, the diffusive scale LD(t) ∼ t1/2 and the persistence scale Lp(t) ∼ t θ . For
large n0, the typical interval length between two consecutive persistent sites is determined by
the decay of persistence only, rather than the diffusion of the particles. So, it is understandable
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Figure 5. The difference ,s(t) = |s(t)− s1/2(t)| is plotted against t for n0 = 0.2, 0.8 and 0.95.
The straight line is a fit with slope 3

8 .
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Figure 6. The observed s(t) (points) with the proposed fitting form at1/2 + btθ (lines and curves)
for n0 = 0.2, 0.5, 0.8 and 0.95 (bottom to top). We have used a = 5.96 and the b values taken
from table 1.

that the dynamical behaviour of s(t) coincides with that of Lp(t) at least at the initial times.
However at late times, when the particle density falls as a result of annihilation, the situation
becomes the same as that of starting with low n0 and the decisive scale is LD(t). However, the
precise form and behaviour of the prefactor b(n0) with n0 remain to be understood.



Spatial distribution of persistent sites 5497

Table 1. Results for the prefactor b and exponent φ as measured from simulations. The numerical
value of φ is found to be close to the persistence exponent θ , whose exact value is 0.375. The
figures in brackets represent statistical error in the last decimal place. Note the sharp rise in b as
n0 → 1.

n0 b φ

0.20 −6.621 0.343 72(11)
0.50 �0 —
0.80 15.701 0.354 95(5)
0.95 84.672 0.365 72(4)

3. Two-point correlations

A good picture of the spatial distribution of the persistent sites and the presence of any possible
correlation in their distribution is obtained from the two-point correlation C(r, t), which is
defined as the probability that site x + r is persistent, given that site x is persistent (averaged
over x)

C(r, t) = 〈ρ(x, t)〉−1〈ρ(x, t)ρ(x + r, t)〉 (18)

where the brackets denote the average over the entire lattice and ρ(x, t) is the density of
persistent sites: i.e. ρ(x, t) = 1 if site x is persistent at time t , and 0 otherwise. Clearly,
〈ρ(x, t)〉 = P(t) by definition.

Within the IIA, the relation between C(r, t) and n(r, t) (we consider r � 1, so that the
discreteness of the underlying lattice can be ignored) can be written as the following infinite
series:

C(r, t) = P(t)−1n(r, t) + P(t)−2
∫ r

1
dx n(x, t)n(r − x, t)

+P(t)−3
∫ r

1
dx n(x, t)

∫ r−x

1
dy n(y, t)n(r − x − y, t) + · · · . (19)

The first term corresponds to the case where there is no other persistent site in the range
[0 : r], i.e. a single Interval of length r . The second term gives the probability that the range
is split into two Intervals of length x and r − x by the presence of a persistent site at x, the
third term gives the probability for three Intervals and so on.

The above series can be rewritten as the following self-consistent equation for C(r, t).

P(t)C(r, t) = n(r, t) +
∫ r

1
n(x, t)C(r − x, t) dx. (20)

In terms of the Laplace transforms C̃(p, t) = ∫ ∞
1 C(r, t)e−pr dr and ñ(p, t) =∫ ∞

1 n(s, t)e−ps ds equation (20) becomes

C̃(p, t) = ñ(p, t)

P (t)− ñ(p, t) . (21)

From equation (7), we find

ñ(p, t) = s−1f̃ (ps) (22)

where f̃ (q) = ∫ ∞
s−1 f (η)e−qη dη, which can be written in the following regularized form, using

equation (9).

f̃ (q) = s(t)P (t)− f1(q) (23)
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where

f1(q) =
∫ ∞

0
f (η)[1 − e−qη] dη. (24)

Substituting equations (22)–(24) into (21) we find that

C̃(p, t) = s(t)P (t)

f1(ps)
− 1. (25)

The second term in the RHS can be neglected at late times, since s(t)P (t) diverges as
t1/z−θ . It follows that, in this limit, C(r, t) has the dynamic scaling form

C(r, t) = P(t)g
(
r

s(t)

)
(26)

where

g̃(q) = 1

f1(q)
(27)

is the Laplace transform of g(x): g̃(q) = ∫ ∞
0 g(x)e−qx dx.

The preceding expressions can be used to deduce the limiting behaviour of the scaling
function g(η) for the cases η � 1 and η � 1, without needing to solve equation (19) or (20)
explicitly.

Case 1. η � 1.
To find the asymptotic behaviour of g(η), we note that f1(q) vanishes near q = 0 as

f1(q) ∼ q. Thus g̃(q) ∼ 1
q

as q → 0 from equation (27). By standard results in the theory of
Laplace transforms [14], this implies that g(η) ∼ 1 as η → ∞.

Case 2. η � 1.
To analyse this case, consider the real-space relation equation (19). For η � 1, or,

equivalently, r � s, we have shown that n(r, t) ∼ P(t)r−τ . It is clear that, in this range,
the RHS of equation (19) is time independent, so C(r, t) in the LHS should also be time
independent. From the dynamic scaling form equation (26), we find that this is possible only
if the scaling function is a power law near the origin: g(η) ∼ η−α as η → 0. After substituting
in equation (26) and requiring the resulting expression to be time independent, we find

α = zθ. (28)

We find C(r, t) ∼ r−α for r � s and C(r, t) � P(t) for r � s. The power law decay
at small distances is expected, because the RHS of equation (19) contains only scale invariant
terms in this limit, hence the LHS also should be likewise. In appendix B, we show that this
is also consistent with equation (20).

We see that, in the IIA calculation, the length scale s(t) demarcates the correlated and
uncorrelated regions forC(r, t). In the correlated region (r � s(t)), the persistent sites form a
fractal with fractal dimension df = d−α = 1

4 , with the correlation length s(t) increasing with
time as s ∼ t1/2. The IIA results agree very well with those of numerical simulations [10],
showing the validity of the approximation.

4. Conclusion

Persistent sites are shown to have strong correlations in their spatial distribution. In the one-
dimensional A + A → ∅ reaction–diffusion system, we show that there is a length scale



Spatial distribution of persistent sites 5499

s(t), diverging with time as s(t) ∼ t1/z, which demarcates the correlated region from the
uncorrelated one. We argue that z = 2 in the large-t limit. Persistent sites separated by
distance k � s(t) are highly unlikely to have a particle A between them and so retain their
persistent character. Only persistent sites separated by distance �s(t) take part in the decay
of persistence at subsequent times.

We find that if k is the distance of separation between any two consecutive persistent
sites, then for k � s(t) the distribution of k is scale free and decays algebraically as k−τ with
τ = 2 − zθ . We show this using the IIA, which assumes no correlation in the lengths of any
two adjacent intervals. We have verified our results by numerical simulations, which suggests
the validity of the IIA. Under the IIA, our calculation for the two-point correlation shows that
over length scales r � s(t), the persistent site distribution over the lattice is a fractal with
dimension df = τ − 1, in accordance with our earlier observations [10].
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Appendix A

The divergence in the first integral in equation (10) can be separated out as follows. We write
f (η − x) = f (η) + ,xf (η) and β(η − x) = β(η) + ,xβ(η), so that limx→0,xf (η) =
limx→0,xβ(η) = 0.

After substituting for f (η − x) and β(η − x), the divergent part of the integral separates
into the following terms:
∫ η

2

s(t)−1
f (x)f (η − x)β(η − x) dx = f (η)β(η)

∫ η

2

s(t)−1
f (x) dx + f (η)

∫ η

2

0
f (x),xβ(η) dx

+β(η)
∫ η

2

0
f (x),xf (η) dx +

∫ η

2

0
f (x),xf (η),xβ(η) dx.

The first term is divergent near the origin, while all other terms are finite by construction.
Now we rewrite the first term using the equality

∫ ∞
s(t)−1 f (x) dx = s(t)P (t). After some

simplifications, the integral becomes
∫ η

2

s(t)−1
f (x)f (η − x)β(η − x) dx = f (η)β(η)s(t)P (t)

+
∫ η

2

0
f (x)f (η − x)[β(η − x)− β(η)] dx

+
∫ η

2

0
f (x)[f (η − x)− f (η)] − β(η)f (η)

∫ ∞

η

2

f (x) dx.

The first term is the divergent part of the integral, which exactly cancels the last term in
equation (10), to give the regularized equation (12).

Appendix B

For r � 1, it is reasonable to assume that the higher-order terms in the RHS of equation (19)
will contribute more than the first term, i.e. the range [0 : r] is more likely to be covered
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with more than one Interval than a single one of length r . After using this approximation, and
substituting n(r, t) � (τ − 1)P (t)r−τ in the continuum limit, equation (20) is simplified to

C(r, t) � (τ − 1)
∫ r−1

1
(r − x)−τC(x, t) dx.

Our purpose is to see whether the equation

r−α � (τ − 1)
∫ r−1

1
x−α(r − x)−τ dx (B.1)

is consistent for α = zθ = 2 − τ (equation (11)) at r � 1.
The integral I = ∫ r−1

1 x−τ (r − x)−α dx can be transformed by change of variables into
the more standard form [15]∫ r−2

0
(1 + y)−τ [r − 1 − y]−α dy � r1−α

1 − α
×F(1, τ ; 2 − α; −r) for α < 1 and r � 1

whereF(a, b; c; z) is the Gauss hypergeometric function. For b = c,F(a, b; b; z) = (1−z)−a
exactly, independent of b [16]. Thus, for α = 2 − τ we find

(τ − 1)I = r−α
[

1 + o

(
1

r

)]

which is consistent with equation (B.1), at r � 1.
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[3] Tam W Y, Zeitak R, Szeto K Y and Stavans J 1997 Phys. Rev. Lett. 78 1588
[4] Yurke B, Pargellis A N, Majumdar S N and Sire C 1997 Phys. Rev. E 56 R40
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